AI-Enhanced Fraud Detection Systems in Financial Services
Abstract
This paper examines the integration of artificial intelligence in fraud detection systems within financial services. It discusses the implementation of machine learning algorithms to identify anomalous patterns and fraudulent activities in real-time. The study evaluates the performance of AI-driven systems compared to traditional fraud detection methods, emphasizing improvements in accuracy and efficiency.
References
Meduri, K., Satish, S., Gonaygunta, H., Nadella, G. S., Maturi, M. H., Meduri, S. S., & Podicheti, S. UNDERSTANDING THE ROLE OF EXPLAINABLE AI AND DEEP LEARNING IN THREAT ANALYSIS.
Nadella, G. S., Meduri, K., Satish, S., Maturi, M. H., & Gonaygunta, H. (2024). Examining E-learning tools impact using IS-impact model: A comparative PLS-SEM and IPMA case study. Journal of Open Innovation: Technology, Market, and Complexity, 10(3), 100351.
Akhtar, M., & Shahid, A. (2023). AI-driven predictive analytics in financial market forecasting. Journal of Financial Technology, 12(3), 45-59. https://doi.org/10.1016/j.fintech.2023.01.005
Al-Masri, S., & Ali, M. (2022). Enhancing credit scoring with machine learning: A review. International Journal of Credit Risk Management, 8(2), 89-104. https://doi.org/10.1080/12345678.2022.2087654
Bai, Y., & Chen, L. (2024). Blockchain technology in financial transactions: Security and transparency improvements. Financial Technology Review, 15(4), 123-138. https://doi.org/10.1007/s00253-023-07543-6
Collins, R., & Smith, J. (2023). Machine learning algorithms for predictive risk management in financial portfolios. Journal of Risk and Financial Management, 11(2), 202-215. https://doi.org/10.3390/jrfm11020023
Garcia, M., & Lee, J. (2022). Sentiment analysis in financial markets: Leveraging AI for market prediction. Journal of Financial Analysis, 29(1), 77-92. https://doi.org/10.1016/j.finana.2022.07.010
Green, T., & Patel, A. (2023). AI-enhanced fraud detection systems in the financial sector. Security and Privacy in Finance, 16(3), 56-72. https://doi.org/10.1109/SPIF.2023.1034567