Sentiment Analysis in Financial Markets: AI Techniques for Market Sentiment Prediction
Abstract
This paper explores the use of AI and natural language processing (NLP) for sentiment analysis in financial markets. By analyzing news articles, social media posts, and financial reports, the study investigates how sentiment analysis can predict market movements and influence investment decisions. The research highlights the effectiveness of various AI techniques in extracting actionable insights from large volumes of textual data.
Downloads
References
Nadella, G. S., Meduri, K., Satish, S., Maturi, M. H., & Gonaygunta, H. (2024). Examining E-learning tools impact using IS-impact model: A comparative PLS-SEM and IPMA case study. Journal of Open Innovation: Technology, Market, and Complexity, 10(3), 100351.
Akhtar, M., & Shahid, A. (2023). AI-driven predictive analytics in financial market forecasting. Journal of Financial Technology, 12(3), 45-59. https://doi.org/10.1016/j.fintech.2023.01.005
Al-Masri, S., & Ali, M. (2022). Enhancing credit scoring with machine learning: A review. International Journal of Credit Risk Management, 8(2), 89-104. https://doi.org/10.1080/12345678.2022.2087654
Bai, Y., & Chen, L. (2024). Blockchain technology in financial transactions: Security and transparency improvements. Financial Technology Review, 15(4), 123-138. https://doi.org/10.1007/s00253-023-07543-6
Meduri, K., Satish, S., Gonaygunta, H., Nadella, G. S., Maturi, M. H., Meduri, S. S., & Podicheti, S. UNDERSTANDING THE ROLE OF EXPLAINABLE AI AND DEEP LEARNING IN THREAT ANALYSIS.
Collins, R., & Smith, J. (2023). Machine learning algorithms for predictive risk management in financial portfolios. Journal of Risk and Financial Management, 11(2), 202-215. https://doi.org/10.3390/jrfm11020023
Garcia, M., & Lee, J. (2022). Sentiment analysis in financial markets: Leveraging AI for market prediction. Journal of Financial Analysis, 29(1), 77-92. https://doi.org/10.1016/j.finana.2022.07.010
Green, T., & Patel, A. (2023). AI-enhanced fraud detection systems in the financial sector. Security and Privacy in Finance, 16(3), 56-72. https://doi.org/10.1109/SPIF.2023.1034567