AI-Powered Intrusion Detection Systems: A Hybrid Model for Adaptive Cybersecurity

Authors

  • Dr. Sarah Khan Author

Abstract

Intrusion Detection Systems (IDS) are critical for monitoring and safeguarding networks from unauthorized access. This paper introduces a hybrid AI model that combines signature-based and anomaly-based techniques to create a more adaptive IDS. By learning from past intrusions and continuously adjusting to new threats, the system enhances its accuracy and detection speed. Testing on diverse network environments shows that the hybrid model outperforms traditional IDS in detecting a wide range of intrusions, making it a robust solution for dynamic cybersecurity needs.

Downloads

Download data is not yet available.

References

Balantrapu, S. S. (2021). A Systematic Review Comparative Analysis of Machine Learning Algorithms for Malware Classification. International Scientific Journal for Research, 3(3), 1-29.

Balantrapu, S. S. (2020). AI-Driven Cybersecurity Solutions: Case Studies and Applications. International Journal of Creative Research In Computer Technology and Design, 2(2).

Balantrapu, S. S. (2022). Evaluating AI-Enhanced Cybersecurity Solutions Versus Traditional Methods: A Comparative Study. International Journal of Sustainable Development Through AI, ML and IoT, 1(1), 1-15.

Balantrapu, S. S. (2022). Ethical Considerations in AI-Powered Cybersecurity. International Machine learning journal and Computer Engineering, 5(5).

Balantrapu, S. S. (2021). The Impact of Machine Learning on Incident Response Strategies. International Journal of Management Education for Sustainable Development, 4(4), 1-17.

Balantrapu, S. S. (2019). Adversarial Machine Learning: Security Threats and Mitigations. International Journal of Sustainable Development in Computing Science, 1(3), 1-18.

Pillai, S. E. V. S., Polimetla, K., Avacharmal, R., & Perumal, A. P. (2022). Mental health in the tech industry: Insights from surveys and NLP analysis. JOURNAL OF RECENT TRENDS IN COMPUTER SCIENCE AND ENGINEERING (JRTCSE), 10(2), 22-33.

Deekshith, A. (2020). AI-Enhanced Data Science: Techniques for Improved Data Visualization and Interpretation. International Journal of Creative Research In Computer Technology and Design, 2(2).

Deekshith, A. (2019). Integrating AI and Data Engineering: Building Robust Pipelines for Real-Time Data Analytics. International Journal of Sustainable Development in Computing Science, 1(3), 1-35.

Boppiniti, S. T. (2022). Exploring the Synergy of AI, ML, and Data Analytics in Enhancing Customer Experience and Personalization. International Machine learning journal and Computer Engineering, 5(5).

Boppiniti, S. T. (2020). Big Data Meets Machine Learning: Strategies for Efficient Data Processing and Analysis in Large Datasets. International Journal of Creative Research In Computer Technology and Design, 2(2).

Boppiniti, S. T. (2021). Real-Time Data Analytics with AI: Leveraging Stream Processing for Dynamic Decision Support. International Journal of Management Education for Sustainable Development, 4(4).

Boppiniti, S. T. (2019). Machine Learning for Predictive Analytics: Enhancing Data-Driven Decision-Making Across Industries. International Journal of Sustainable Development in Computing Science, 1(3).

Published

2022-08-17

Issue

Section

Articles

How to Cite

AI-Powered Intrusion Detection Systems: A Hybrid Model for Adaptive Cybersecurity. (2022). International Journal of Holistic Management Perspectives, 3(3). https://injmr.com/index.php/IJHMP/article/view/136

Most read articles by the same author(s)

<< < 1 2 3 4 > >>