Natural Language Processing for Sentiment Analysis in mHealth Systems: Applications and Challenges

Authors

  • Dr. Amit Bali Author

Abstract

This paper explores the application of natural language processing for sentiment analysis in mHealth systems. It discusses the challenges of implementing NLP models for text-based emotion detection and presents solutions to improve the accuracy of sentiment analysis in healthcare communications.

Downloads

Download data is not yet available.

References

Baltrušaitis, T., Zadeh, A., Lim, Y. C., & Morency, L. P. (2018). OpenFace 2.0: Facial behavior analysis toolkit. 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), 59-66. https://doi.org/10.1109/FG.2018.00019

Calvo, R. A., D'Mello, S., Gratch, J., & Kappas, A. (2015). The Oxford handbook of affective computing. Oxford University Press.

Corcoran, P., & Carr, D. (2019). AI in the detection of emotion in facial expressions. IEEE Transactions on Consumer Electronics, 65(1), 75-83. https://doi.org/10.1109/TCE.2019.2892218

Ekman, P., & Friesen, W. V. (2003). Unmasking the face: A guide to recognizing emotions from facial expressions. Malor Books.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.

Hinton, G., & Salakhutdinov, R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504-507. https://doi.org/10.1126/science.1127647

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735

Ko, B. C. (2018). A brief review of facial emotion recognition based on visual information. Sensors, 18(2), 401. https://doi.org/10.3390/s18020401

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539

Liu, B., & Zhang, L. (2012). A survey of opinion mining and sentiment analysis. Mining Text Data, 415-463. https://doi.org/10.1007/978-1-4614-3223-4_13

McDuff, D., & El Kaliouby, R. (2015). Applications of automatic facial coding in media measurement. IEEE Transactions on Affective Computing, 6(2), 190-202. https://doi.org/10.1109/TAFFC.2015.2445334

Mehrabian, A. (1971). Silent messages: Implicit communication of emotions and attitudes. Wadsworth Publishing Company.

Mittal, T., Bhattacharya, U., Chandra, R., Bera, A., & Manocha, D. (2020). EmotiCon: Context-aware multimodal emotion recognition using frege's principle. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 14234-14243. https://doi.org/10.1109/CVPR42600.2020.01425

Poria, S., Cambria, E., Bajpai, R., & Hussain, A. (2017). A review of affective computing: From unimodal analysis to multimodal fusion. Information Fusion, 37, 98-125. https://doi.org/10.1016/j.inffus.2017.02.003

Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39(6), 1161-1178. https://doi.org/10.1037/h0077714

Scherer, K. R., Bänziger, T., & Roesch, E. B. (2010). A blueprint for affective computing: A sourcebook and manual. Oxford University Press.

Shen, L., Wang, M., & Shen, Y. (2011). Sentiment classification of online reviews to travel destinations by supervised machine learning approaches. Expert Systems with Applications, 38(10), 14059-14065. https://doi.org/10.1016/j.eswa.2011.04.066

Tkalčič, M., De Carolis, B., De Gemmis, M., Odić, A., & Košir, A. (2016). Emotions and personality in personalized services. Springer.

Wöllmer, M., Eyben, F., Schuller, B., & Rigoll, G. (2010). A multi-modal LSTM–MRF model for robust facial expression recognition. 2010 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 3642-3645. https://doi.org/10.1109/ICASSP.2010.5495407

Zeng, Z., Pantic, M., Roisman, G. I., & Huang, T. S. (2009). A survey of affect recognition methods: Audio, visual, and spontaneous expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(1), 39-58. https://doi.org/10.1109/TPAMI.2008.52

Pillai, S. E. V. S., & Hu, W. C. (2023, May). Misinformation detection using an ensemble method with emphasis on sentiment and emotional analyses. In 2023 IEEE/ACIS 21st International Conference on Software Engineering Research, Management and Applications (SERA) (pp. 295-300). IEEE.

Kalla, D., Smith, N., Samaah, F., & Polimetla, K. (2022). Enhancing Early Diagnosis: Machine Learning Applications in Diabetes Prediction. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-205. DOI: doi. org/10.47363/JAICC/2022 (1), 191, 2-7.

Published

2023-10-13

Issue

Section

Articles

How to Cite

Natural Language Processing for Sentiment Analysis in mHealth Systems: Applications and Challenges. (2023). International Journal of Holistic Management Perspectives, 4(4). https://injmr.com/index.php/IJHMP/article/view/127