AI-Based Sentiment Detection in mHealth Platforms for Real-Time Mental Health Interventions

Authors

  • Prof. Pawan sharma Author

Abstract

This paper presents an AI-based sentiment detection system for real-time mental health interventions in mHealth platforms. By analyzing text messages exchanged between patients and healthcare providers, the system identifies emotional distress and triggers timely interventions.

Downloads

Download data is not yet available.

References

Pillai, S. E. V. S., & Hu, W. C. (2023, May). Misinformation detection using an ensemble method with emphasis on sentiment and emotional analyses. In 2023 IEEE/ACIS 21st International Conference on Software Engineering Research, Management and Applications (SERA) (pp. 295-300). IEEE.

Kalla, D., Smith, N., Samaah, F., & Polimetla, K. (2022). Enhancing Early Diagnosis: Machine Learning Applications in Diabetes Prediction. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-205. DOI: doi. org/10.47363/JAICC/2022 (1), 191, 2-7.

Ko, B. C. (2018). A brief review of facial emotion recognition based on visual information. Sensors, 18(2), 401. https://doi.org/10.3390/s18020401

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539

Liu, B., & Zhang, L. (2012). A survey of opinion mining and sentiment analysis. Mining Text Data, 415-463. https://doi.org/10.1007/978-1-4614-3223-4_13

McDuff, D., & El Kaliouby, R. (2015). Applications of automatic facial coding in media measurement. IEEE Transactions on Affective Computing, 6(2), 190-202. https://doi.org/10.1109/TAFFC.2015.2445334

Mehrabian, A. (1971). Silent messages: Implicit communication of emotions and attitudes. Wadsworth Publishing Company.

Mittal, T., Bhattacharya, U., Chandra, R., Bera, A., & Manocha, D. (2020). EmotiCon: Context-aware multimodal emotion recognition using frege's principle. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 14234-14243. https://doi.org/10.1109/CVPR42600.2020.01425

Poria, S., Cambria, E., Bajpai, R., & Hussain, A. (2017). A review of affective computing: From unimodal analysis to multimodal fusion. Information Fusion, 37, 98-125. https://doi.org/10.1016/j.inffus.2017.02.003

Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39(6), 1161-1178. https://doi.org/10.1037/h0077714

Scherer, K. R., Bänziger, T., & Roesch, E. B. (2010). A blueprint for affective computing: A sourcebook and manual. Oxford University Press.

Shen, L., Wang, M., & Shen, Y. (2011). Sentiment classification of online reviews to travel destinations by supervised machine learning approaches. Expert Systems with Applications, 38(10), 14059-14065. https://doi.org/10.1016/j.eswa.2011.04.066

Tkalčič, M., De Carolis, B., De Gemmis, M., Odić, A., & Košir, A. (2016). Emotions and personality in personalized services. Springer.

Wöllmer, M., Eyben, F., Schuller, B., & Rigoll, G. (2010). A multi-modal LSTM–MRF model for robust facial expression recognition. 2010 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 3642-3645. https://doi.org/10.1109/ICASSP.2010.5495407

Zeng, Z., Pantic, M., Roisman, G. I., & Huang, T. S. (2009). A survey of affect recognition methods: Audio, visual, and spontaneous expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(1), 39-58. https://doi.org/10.1109/TPAMI.2008.52

Published

2023-10-13

Issue

Section

Articles

How to Cite

AI-Based Sentiment Detection in mHealth Platforms for Real-Time Mental Health Interventions. (2023). International Numeric Journal of Machine Learning and Robots, 7(7). https://injmr.com/index.php/fewfewf/article/view/121

Most read articles by the same author(s)

<< < 1 2 3 4 5