Detecting Depression and Anxiety in Mobile Health Conversations via Sentiment and Emotion Analysis

Authors

  • Prof. Singh Kawar Author

Abstract

This paper proposes a model for detecting depression and anxiety in mobile health conversations using sentiment and emotion analysis. The study explores the combination of facial emotion recognition and text sentiment analysis to identify early signs of mental health issues in patients.

References

Calvo, R. A., D'Mello, S., Gratch, J., & Kappas, A. (2015). The Oxford handbook of affective computing. Oxford University Press.

Corcoran, P., & Carr, D. (2019). AI in the detection of emotion in facial expressions. IEEE Transactions on Consumer Electronics, 65(1), 75-83. https://doi.org/10.1109/TCE.2019.2892218

Ekman, P., & Friesen, W. V. (2003). Unmasking the face: A guide to recognizing emotions from facial expressions. Malor Books.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.

Hinton, G., & Salakhutdinov, R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504-507. https://doi.org/10.1126/science.1127647

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735

Ko, B. C. (2018). A brief review of facial emotion recognition based on visual information. Sensors, 18(2), 401. https://doi.org/10.3390/s18020401

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539

Liu, B., & Zhang, L. (2012). A survey of opinion mining and sentiment analysis. Mining Text Data, 415-463. https://doi.org/10.1007/978-1-4614-3223-4_13

McDuff, D., & El Kaliouby, R. (2015). Applications of automatic facial coding in media measurement. IEEE Transactions on Affective Computing, 6(2), 190-202. https://doi.org/10.1109/TAFFC.2015.2445334

Mehrabian, A. (1971). Silent messages: Implicit communication of emotions and attitudes. Wadsworth Publishing Company.

Mittal, T., Bhattacharya, U., Chandra, R., Bera, A., & Manocha, D. (2020). EmotiCon: Context-aware multimodal emotion recognition using frege's principle. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 14234-14243. https://doi.org/10.1109/CVPR42600.2020.01425

Poria, S., Cambria, E., Bajpai, R., & Hussain, A. (2017). A review of affective computing: From unimodal analysis to multimodal fusion. Information Fusion, 37, 98-125. https://doi.org/10.1016/j.inffus.2017.02.003

Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39(6), 1161-1178. https://doi.org/10.1037/h0077714

Pillai, S. E. V. S., & Hu, W. C. (2023, May). Misinformation detection using an ensemble method with emphasis on sentiment and emotional analyses. In 2023 IEEE/ACIS 21st International Conference on Software Engineering Research, Management and Applications (SERA) (pp. 295-300). IEEE.

Kalla, D., Smith, N., Samaah, F., & Polimetla, K. (2022). Enhancing Early Diagnosis: Machine Learning Applications in Diabetes Prediction. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-205. DOI: doi. org/10.47363/JAICC/2022 (1), 191, 2-7.

Scherer, K. R., Bänziger, T., & Roesch, E. B. (2010). A blueprint for affective computing: A sourcebook and manual. Oxford University Press.

Shen, L., Wang, M., & Shen, Y. (2011). Sentiment classification of online reviews to travel destinations by supervised machine learning approaches. Expert Systems with Applications, 38(10), 14059-14065. https://doi.org/10.1016/j.eswa.2011.04.066

Tkalčič, M., De Carolis, B., De Gemmis, M., Odić, A., & Košir, A. (2016). Emotions and personality in personalized services. Springer.

Wöllmer, M., Eyben, F., Schuller, B., & Rigoll, G. (2010). A multi-modal LSTM–MRF model for robust facial expression recognition. 2010 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 3642-3645. https://doi.org/10.1109/ICASSP.2010.5495407

Zeng, Z., Pantic, M., Roisman, G. I., & Huang, T. S. (2009). A survey of affect recognition methods: Audio, visual, and spontaneous expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(1), 39-58. https://doi.org/10.1109/TPAMI.2008.52

Published

2023-09-11

Issue

Section

Articles

How to Cite

Kawar, P. S. (2023). Detecting Depression and Anxiety in Mobile Health Conversations via Sentiment and Emotion Analysis. International Numeric Journal of Machine Learning and Robots, 7(7). https://injmr.com/index.php/fewfewf/article/view/120

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 > >>