AI-Enhanced Customer Support Chatbots for E-Commerce Platforms

Authors

  • Prof. Goyal Karmakar Author

Abstract

Chatbots have become essential for customer support in e-commerce platforms, but their effectiveness can be improved with AI. This paper explores the use of AI-enhanced chatbots that leverage Natural Language Processing (NLP) and machine learning to provide more accurate and personalized customer service. The system uses sentiment analysis, user intent recognition, and contextual understanding to handle complex queries and resolve issues in real-time. Case studies on e-commerce platforms demonstrate that AI-driven chatbots lead to higher customer satisfaction and reduced response times. The research highlights the potential of AI in transforming customer service experiences.

Downloads

Download data is not yet available.

References

Chintale, P., Korada, L., Ranjan, P., & Malviya, R. K. (2019). Adopting Infrastructure as Code (IaC) for Efficient Financial Cloud Management. ISSN: 2096-3246, 51(04).

Chintale, P., Korada, L., WA, L., Mahida, A., Ranjan, P., & Desaboyina,(2020) G. RISK MANAGEMENT STRATEGIES FOR CLOUD-NATIVE FINTECH APPLICATIONS DURING THE PANDEMIC.

Dahiya, S., Singh, S. K., Choudhary, S. K., Ranjan, P., & Cognizant, N. J. (2020). FUNDAMENTALS OF DIGITAL TRANSFORMATION IN FINANCIAL SERVICES: KEY DRIVERS AND STRATEGIES. Han, X., Zhao, X., de Almeida, AL, Freitas, WDC, & Bai, W, 1655-1659.

Raghunath, V., Kunkulagunta, M., & Nadella, G. S. (2020). Optimizing SAP Data Processing with Machine Learning Algorithms in Cloud Environments. International Transactions in Artificial Intelligence, 4(4).

Raghunath, V., Kunkulagunta, M., & Nadella, G. S. (2020). Artificial Intelligence in Business Analytics: Cloud-Based Strategies for Data Processing and Integration. International Journal of Sustainable Development in Computing Science, 2(4).

Raghunath, V., Kunkulagunta, M., & Nadella, G. S. (2020). Scalable Data Processing Pipelines: The Role of AI and Cloud Computing. International Scientific Journal for Research, 2(2).

Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1798-1828.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Amodei, D. (2020). Language models are few-shot learners. Advances in Neural Information Processing Systems, 33, 1877-1901.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 770-778).

Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18(7), 1527-1554.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780.

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In 3rd International Conference on Learning Representations (ICLR) (pp. 1-15).

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems (pp. 1097-1105).

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. In Proceedings of the International Conference on Learning Representations (ICLR).

Murphy, K. P. (2012). Machine learning: A probabilistic perspective. MIT Press.

Ng, A. Y., & Jordan, M. I. (2002). On discriminative vs. generative classifiers: A comparison of logistic regression and naive Bayes. In Advances in Neural Information Processing Systems (pp. 841-848).

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533-536.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85-117.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., ... & Hassabis, D. (2016). Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587), 484-489.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction (2nd ed.). MIT Press.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. In Advances in Neural Information Processing Systems (pp. 5998-6008).

Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600-612.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine Learning, 8(3-4), 229-256.

Published

2020-01-30

Issue

Section

Articles

How to Cite

AI-Enhanced Customer Support Chatbots for E-Commerce Platforms. (2020). International Journal of Holistic Management Perspectives, 1(1). https://injmr.com/index.php/IJHMP/article/view/147

Most read articles by the same author(s)

<< < 1 2 3 4 5 6 > >>